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Global threat of arsenic in groundwater

Joel Podgorski*?* and Michael Berg™3*

Naturally occurring arsenic in groundwater affects millions of people worldwide. We created a global
prediction map of groundwater arsenic exceeding 10 micrograms per liter using a random forest
machine-learning model based on 11 geospatial environmental parameters and more than 50,000
aggregated data points of measured groundwater arsenic concentration. Our global prediction map
includes known arsenic-affected areas and previously undocumented areas of concern. By combining the
global arsenic prediction model with household groundwater-usage statistics, we estimate that

94 million to 220 million people are potentially exposed to high arsenic concentrations in groundwater,
the vast majority (94%) being in Asia. Because groundwater is increasingly used to support growing
populations and buffer against water scarcity due to changing climate, this work is important to raise
awareness, identify areas for safe wells, and help prioritize testing.

he natural, or geogenic, occurrence of
arsenic in groundwater is a global prob-
lem with wide-ranging health effects for
humans and wildlife. Because it is toxic
and does not serve any beneficial meta-
bolic function, inorganic arsenic (the species
present in groundwater) can lead to disorders
of the skin and vascular and nervous systems,
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as well as cancer (7, 2). The major source of
inorganic arsenic in the diet is through arsenic-
contaminated water, although ingestion through
food, particularly rice, represents another im-
portant route of exposure (3). As a consequence,
the World Health Organization (WHO) has set
a guideline arsenic concentration of 10 pgy/liter
in drinking water (4).

At least trace amounts of arsenic occur in
virtually all rocks and sediments around the
world (5). However, in most of the large-scale
cases of geogenic arsenic contamination in
groundwater, arsenic accumulates in aquifers
composed of recently deposited alluvial sedi-
ments. Under anoxic conditions, arsenic is
released from the microbial and/or chemical
reductive dissolution of arsenic-bearing iron(III)
minerals in the aquifer sediments (6-9). Un-

der oxidizing, high-pH conditions, arsenic
can also desorb from iron and aluminum
hydroxides (10). Furthermore, aquifers in
flat-lying sedimentary sequences generally
have a small hydraulic gradient, causing ground-
water to flow slowly. This longer groundwater
residence time allows dissolved arsenic to ac-
cumulate and its concentration to increase.
Other processes responsible for arsenic release
into groundwater include oxidation of arsenic-
bearing sulfide minerals as well as release from
arsenic-enriched geothermal deposits.

That arsenic is generally not included in the
standard suite of tested water quality param-
eters (II) and is not detected by the human
senses means that arsenic is regularly being
discovered in new areas. Since one of the
greatest occurrences of geogenic groundwater
arsenic was discovered in 1993 in the Bengal
delta (5, 12, 13), high arsenic concentrations
have been detected all around the world, with
hot spots including Argentina (74-17), Cam-
bodia (18, 19), China (20-22), India (23-25),
Mexico (26, 27), Pakistan (28, 29), the United
States (30, 31), and Vietnam (32, 33).

To help identify areas likely to contain high
concentrations of arsenic in groundwater, sev-
eral researchers have used statistical learning
methods to create arsenic prediction maps based
on available datasets of measured arsenic con-
centrations and relevant geospatial parameters.
Previous studies have focused on Burkina Faso
(34), China (21, 35), South Asia (29, 36), South-
east Asia (37), the United States (31, 38, 39), and
the Red River delta in Vietnam (33), as well as
sedimentary basins around the world (40). The
predictor variables used in these studies gener-
ally include various climate and soil parame-
ters, geology, and topography (table S3).

Fig. 1. Arsenic concentrations, excluding those known to originate from a depth greater than 100 m. Values are from the sources listed in table S1. The
geographical distribution of data is indicated by continent.
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Taking advantage of the increasing avail-
ability of high-resolution datasets of relevant
environmental parameters, we use statistical
learning to model what to our knowledge is
the most spatially extensive compilation of
arsenic measurements in groundwater as-
sembled, which makes a global model possi-
ble. To focus on health risks, we consider the
probability of arsenic in groundwater exceeding
the WHO guideline. For this, we have chosen the
random forest method, which our preliminary
tests showed to be highly effective in address-
ing this classification problem. We use the re-
sulting model to produce the most accurate and
detailed global prediction map to date of geo-
genic groundwater arsenic, which can be used
to help identify previously unknown areas of
arsenic contamination as well as more clearly

delineate the scope of this global problem and
considerably increase awareness.

Results
Random forest modeling

We aggregated data from nearly 80 studies of
arsenic in groundwater (see table S1 for refer-
ences and statistics) into a single dataset (n >
200,000). Averaging into 1-km? pixels resulted
in more than 55,000 arsenic data points for use
in modeling based on groundwater samples not
known to originate from greater than 100-m
depth (Fig. 1).

To create the simplest and most accurate
model, an initial set of 52 potentially relevant
environmental predictor variables was itera-
tively reduced in consideration of their rela-
tive importance and impact on the accuracy

of a succession of random forest models. The
final selection of 11 predictor variables (table
S2) includes several soil parameters (topsoil
clay, subsoil sand, pH, and fluvisols), all of
the climate variables (precipitation, actual
and potential evapotranspiration, and com-
binations thereof, as well as temperature),
and the topographic wetness index. By con-
trast, none of the geology variables proved to
be statistically important. This is not to imply
that geology does not play a role in geogenic
arsenic accumulation, but rather that the par-
ticular geology variables tested were not as
relevant as the other variables. This may be
due to the coarse nature of the geological maps,
which are standardized for the entire world.
Although the number of predictor variables
was reduced by nearly 80%, both the area

Fig. 2. Global prediction of groundwater arsenic. (A to F) Modeled probability of arsenic concentration in groundwater exceeding 10 pg/liter for the entire globe
(A) along with zoomed-in sections of the main more densely populated affected areas (B) to (F). The model is based on the arsenic data points in Fig. 1 and the predictor
variables in table S2. Figs. S2 to S8 provide more detailed views of the prediction map.
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under the curve (AUC, 0.89) and Cohen’s kappa
statistic (0.55) remained unchanged.

The final random forest model was created
based on the compiled global dataset of high
and low arsenic concentrations along with the
11 predictor variables. The standard number of
variables to be made available at each branch
of each tree is between three and four (see
methods). Because our tests showed the value
of three performing better than four and higher
values (though error and performance rates
varied only within ~1%), we set this parameter
to three. The global map produced from this
model is displayed in Fig. 2A along with more
detailed views of the more populated affected
continental regions shown in Fig. 2, B to F. It
indicates the probability of the concentration
of arsenic in groundwater in a given 1-km? cell
exceeding 10 ug/liter. The uncertainty of the
model is inherent in the probabilities them-
selves, because they are simply the average of
the votes or predictions of high or low values
of each of the 10,001 trees grown. That is, each
tree casts a vote of 0 or 1 (“no” or “yes” to As >
10 ugy/liter) for each cell based on the values of
the predictor variables in that cell. Figures S2

to S8 also provide more detailed views of the
prediction map for each of the inhabited
continents.

The importance of each of the 11 predictor
variables in terms of mean decrease in ac-
curacy and mean decrease in the Gini index
is listed in fig. S1. Relative to the initial set of
52 variables, the values of these two statistics
for most of the 11 final predictor variables ap-
pear to fall within a fairly narrow range, in-
dicating comparable importance. Exceptions
include fluvisols and soil pH, which have
somewhat greater importance, and temper-
ature, which, according to both statistics, is
the least important of the 11 variables. Soil
pH was also found to be an important pre-
dictor variable in arid, oxidizing environments
in Pakistan (29). Although widespread arsenic
dissolution occurs in Holocene fluvial sedi-
ments (5-7, 9, 37), this geological epoch has
not been consistently mapped around the
world. However, the global dataset of fluvisols
provides a very suitable alternative (29), which
may even be more appropriate because fluvisols
by definition encompass recent fluvial sedi-
ments and not, for example, aeolian Holocene

Table 1. Confusion matrix and other statistics summarizing the results of applying the random
forest model to the test dataset at a probability cutoff of 0.50.

Model output Value
Predicted As < 10 ug/liter

Measured As < 10 ug/liter 7710

Measured As > 10 ug/liter 555
Predicted As > 10 ug/liter

Measured As < 10 ug/liter 1394

Measured As > 10 ug/liter 2037
Sensitivity 0.79
Specificity 0.85
PPV 0.59
NPV 0.93
Prevalence 0.22
Balanced accuracy 0.82
Cohen's kappa 0.55
AUC 0.89

Fig. 3. Proportions of land area and population potentially affected by arsenic concentrations in

groundwater exceeding 10 pg/liter by continent.
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sediments that are generally not relevant for
arsenic release. The generally high model im-
portance of climate variables, as evidenced by
them all being selected for the final model,
highlights the strong control that climate has
on arsenic release in aquifers. In particular,
precipitation and evapotranspiration have a
direct role in creating conditions conducive
for arsenic release under reducing condi-
tions (e.g., waterlogged soils) as well as high
aridity associated with oxidizing, high-pH
conditions.

The performance of the random forest
model on the test dataset (20% of the data,
which was randomly selected while maintain-
ing the relative distribution of high and low
values) is summarized in the confusion matrix
in Table 1. Despite a prevalence of high values
(>10 pg/liter) of only 22% in the dataset, the
model performs well in predicting both high
values (sensitivity: 0.79) and low values (spec-
ificity: 0.85) at a probability cutoff of 0.50. The
average of these two figures, known as balanced
accuracy, is correspondingly high at 0.82. Like-
wise, the model’s AUC, which considers the full
range of possible cutoffs, has a very high value
of 0.89 with the test dataset (Table 1). For
comparison, the AUC of a random forest using
all 52 original predictor variables is also 0.89.

The model was also tested on a dataset of
more than 49,000 arsenic data points origi-
nating from known depths greater than 100 m
(average 562 m, standard deviation 623 m).
Although the model was not trained on any
measurements from these depths and the fact
that only surface parameters were used as pre-
dictor variables, the model nevertheless per-
formed quite well in predicting the arsenic
concentrations of these deep groundwater
sources, as evidenced by an AUC of 0.77.

Regions and populations at risk

Areas predicted to have high arsenic concen-
trations in groundwater exist on all continents,
with most being located in Central, South, and
Southeast Asia; parts of Africa; and North and
South America (Fig. 2 and figs. S2 to S8). Known
areas of groundwater arsenic contamination
are generally well captured by the global arsenic
prediction map, for example, parts of the western
United States, central Mexico, Argentina, the
Pannonian Basin, Inner Mongolia, the Indus
Valley, the Ganges-Brahmaputra delta, and
the Mekong River and Red River deltas. Areas
of increased arsenic hazard where little con-
centration data exist include parts of Central
Asia, particularly Kazakhstan, Mongolia, and
UzbeKistan; the Sahel region; and broad areas of
the Arctic and sub-Arctic. Of these, the Central
Asian hazard areas are better constrained, as
evidenced by higher probabilities.
Probability threshold values of 0.57 from
the sensitivity-specificity comparison and 0.72
from the positive predictive value (PPV)-negative
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predictive value (NPV) comparison were found
using the full dataset (combined training and
test datasets) of arsenic concentrations. The
proportions of high modeled arsenic hazard
by continent associated with each of these
probabilities are shown in Fig. 3. Global maps
of the potentially affected population in the
risk areas, as determined by these two thresh-
olds, are shown in Fig. 4. As described in the
methods, these maps were then used to esti-
mate the population potentially affected by
drinking groundwater with arsenic concen-
trations exceeding 10 ugy/liter.

The resulting global arsenic risk assessment
indicates that about 94 million to 220 million
people around the world (of which 85 to 90%
are in South Asia) are potentially exposed to high
concentrations of arsenic in groundwater from
their domestic water supply (tables S4 and S5).
This range is consistent with the previous most
comprehensive literature compilations, that is,
140 million people (41) and 225 million people
(42). Household groundwater-use statistics
were not available for ~6 to 8% of the affected
countries (depending on the cutoff), for which
the less detailed statistics derived from the
AQUASTAT database of the Food and Agricul-
ture Organization of the United Nations were
used instead (see methods for details). To deter-
mine the amount of error that using these
more general groundwater-use statistics might
introduce to the overall population figures,
the global potentially affected populations
were recalculated with these countries’ (those
lacking household groundwater-use statistics)
groundwater-use rates set to the extreme values
of 0 and 100%. Because this applied to relatively
few countries and arsenic-affected areas, doing
so affected the overall global population figures
by an inconsequential amount (+0.1%), indicat-
ing that using the AQUASTAT groundwater-
use rates, where necessary, is an acceptable
approximation.

This estimate of risk takes into account
only the proportion of households utilizing
unprocessed groundwater and assumes uniform
rates throughout the urban and nonurban areas
of each country. The uncertainties of these rates
are unknown. The population in each cell was
reduced by the uncertainty of the cell’s predic-
tion, which is justified based on the heteroge-
neity inherent in the accumulation of arsenic in
an aquifer, which is generally at a much finer
scale than that of the 1-km? resolution of the
arsenic hazard map. Because the arsenic pre-
diction for a cell represents the average outcome
for that cell, we can take the modeled probability
as a first-order approximation of the proportion
of an aquifer in that cell containing high arsenic
concentrations. Only cells exceeding the proba-
bility threshold (i.e., 0.57 or 0.72) were con-
sidered. The global estimate of 94 million to
220 million people potentially affected by con-
suming arsenic-contaminated groundwater is

PodgorskKi et al., Science 368, 845-850 (2020) 22 May 2020

Fig. 4. Estimated population at risk. (A to L) Population in risk areas potentially containing aquifers
with arsenic concentrations >10 ug/liter using probability cutoffs of 0.57 (A), at which sensitivity

and specificity are equal [inset in (A)] as applied to the full (training and test) dataset, and 0.72 (G),
at which PPV and NPV are equal [inset in (G)] using the full dataset. The detailed areas of Fig. 2 are also
repeated here for both models (B) to (F) and (H) to (L).
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broken down by continent and country in tables
S4 and S5, respectively, and represents the
most accurate and consistent global estimate
available.

Discussion

The accuracy of the global groundwater arsenic
prediction model presented here, as indicated,
for example, with an AUC of 0.89 calculated
with the test dataset, exceeds that found in
previous arsenic prediction studies (table S3).
The dominance of climate and soil parame-
ters in the final model is indicative of their
direct influence or at least strong association
with the processes of arsenic accumulation in
groundwater.

With respect to previous arsenic prediction
maps of global sedimentary basins (40, 43),
the new model represents a substantial ad-
vancement on a few different levels. First, the
new model presented here provides predic-
tions for all areas of the inhabited continents,
whereas the previous first-generation statisti-
cal model covered only about half of the land
areas. In addition, a 10-fold increase in mea-
surement points has allowed arsenic concen-
trations to be incorporated from many more
areas of the globe. The greatly expanded avail-
ability and quality of global predictor datasets
over the past 10 years has enabled new variables
to be considered, such as soil type (e.g., fluvisols),
as well as provided a 10- to 60-fold greater
spatial resolution (i.e., 30 arc-sec versus 5 to
30 arc-min). However, the presence of high
arsenic in groundwater at a given location is of
course predicated on the existence of an aquifer
in the first place, which may not be so in the
case of unfractured solid rock, steep terrain, or
very dry conditions. Models are only as good
as the data on which they are based. As accurate
as the new arsenic model is, it could be further
improved as more arsenic data and more de-
tailed predictor datasets come into existence.

Particularly in sedimentary aquifers, arsenic
concentration is often highly dependent on
depth, that is, on specific sedimentary sequen-
ces that differ in the concentration of arsenic
in sediments as well as the geochemical con-
ditions conducive to arsenic release. To better
characterize this relationship in a given sedi-
mentary basin, detailed depth information of
groundwater samples would need to be incor-
porated in a separate basin-level study. Unfor-
tunately, it is not feasible in a global-scale
study to account for all of the diversity of the
sedimentary basins of the world, especially
because depth information of groundwater
samples is often not available. As such, we
have relied on a statistical analysis of model
performance against depth ranges of samples
(where present) to determine model sensitiv-
ity to depth.

Our approach in the risk assessment of po-
tentially affected populations is relatively dis-

PodgorskKi et al., Science 368, 845-850 (2020)

cerning and/or conservative. As such, the
resulting population estimates may in some
cases be lower than those found in earlier
studies. One reason for this is that we used
country-specific statistics of rural and urban
domestic groundwater usage, which allowed
us to subtract the proportion of the population
that uses surface water, tap water, or other
sources. This was not the case, for example, in
a previous study of China that estimated that
19.6 million people were affected in the coun-
try (21), whereas our estimate is considerably
lower at 4.3 million to 12.1 million. Further-
more, we consider only areas in which the prob-
ability of high arsenic exceeds the statistically
determined cutoffs, that is, 0.57 and 0.72. Taking
the United States as an example, applying this
criterion left only 0.2 to 2% of the area of the
country over which to sum the potentially af-
fected population (<0.21 million, this study).
In a previous arsenic risk assessment of the
United States (31), the entire country was used
to estimate affected population (2.1 million),
that is, not only the high-risk areas.

The actual proportion of groundwater usage
varies spatially throughout a country, and so
more detailed usage statistics beyond only
urban versus rural would improve the accuracy
of a risk assessment. In addition, more ground-
water samples (ideally including depth infor-
mation) from areas that currently have poor
coverage would benefit future modeling efforts
by allowing the model to be better adapted to
those areas.

The presented arsenic probability maps
should be used as a guide to further ground-
water arsenic testing, for example, in Central
Asia, the Sahel, and other regions of Africa.
Only actual groundwater quality testing can
definitively determine the suitability of ground-
water with respect to arsenic, particularly
because of small-scale (<1 km) aquifer hetero-
geneities that cannot be modeled with existing
global datasets (9, 44). The hazard maps high-
light areas at risk and provide a basis for
targeted surveys, which continue to be impor-
tant. The already large number of people po-
tentially affected can be expected to increase
as groundwater use expands with a growing
population and increasing irrigation, especially
in the light of water scarcity associated with
warmer and drier conditions related to climate
change. The maps can also help aid mitigation
measures, such as awareness raising, coordi-
nation of government and financial support,
health intervention programs, securing alter-
native drinking water resources, and arsenic
removal options tailored to the local ground-
water conditions as well as social setting.
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Dowsing for danger

Arsenic is a metabolic poison that is present in minute quantities in most rock materials and, under certain natural
conditions, can accumulate in aquifers and cause adverse health effects. Podgorski and Berg used measurements of
arsenic in groundwater from [BO previous studies to train a machine-learning model with globally continuous predictor
variables, including climate, soil, and topography (see the Perspective by Zheng). The output global map reveals the
potential for hazard from arsenic contamination in groundwater, even in many places where there are sparse or no
reported measurements. The highest-risk regions include areas of southern and central Asia and South America.

Understanding arsenic hazard is especially essential in areas facing current or future water insecurity.
Science, this issue p. 845; see also p. 818
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METHODS

Random forest modeling(46) was used with the R programming language(47) to determine statistical
relationships between global independent or predictor variables of various environmental
parameters and the dependent or target variable of arsenic concentration in groundwater. Random
forests generate an ensemble of decision trees, which are models in which the target variable is split
in consecutive nodes using a predictor variable and an associated cutoff that result in the greatest
variance in the target variable at each node. Each tree in a random forest is different due to a
randomly selected subset of predictor variables being made available at each node (typically the
square root of the total number of variables)(48) as well as a random selection with replacement of
data rows (bootstrap aggregating or bagging), consequently resulting in about one-third of the data
not being used in a given tree(46). Adding these elements of randomness to the decision trees and
averaging their results produces a model that is more stable against small changes in the data(49).
The following sections describe the various steps that were taken in the modeling process.

Preparation of arsenic data

Measurements of arsenic concentration in groundwater were compiled from many different sources
(Table S1). These data sources represent a combination of measurements from field test kits and
sophisticated lab analyses, though the specific method that was used is often not clearly stated.
Since the resolution of the predictor data sets used is 1 km, the geometric mean of concentrations
falling within 1-km? pixels were used for the data points for modeling. These values were then
converted into binary form by setting all arsenic concentrations meeting the WHO guideline of

<10 pg/L to zero and all concentrations >10 pg/L to one. This was done in order to i) focus on the
basic health question of groundwater being safe or unsafe for drinking and ii) mitigate differences in
precision among the different analysis methods used by the various data sources. The values of the
predictor variables were then found at the geographical coordinates of each data point. The dataset
was then randomly divided into training (80%) and test (20%) datasets, each preserving the
proportion of high and low values of the full dataset.

Evaluation of well depth

Since by necessity the predictor variables used in our geospatial modeling are all based on land
surface data, we reason that arsenic concentrations originating from greater depths are likely less
well explained by parameters at the surface. We therefore tuned the selection of concentration data
by testing model performance with different data subsets based on the following reported well
depths or lack thereof: 0-25 m, 0-50 m, 0-75 m, 0-100 m, 0-125 m, 0-150 m, 0-3700 m (all
concentrations with well-depth information) and all data (with and without well depth). For each of
these subsets, we ran a random forest model with the full set of predictor variables (see below).
Since the proportion of high measurements (prevalence) varies among the different concentration
subsets, we analyzed model performance using the Cohen’s kappa coefficient(50), which indicates
the accuracy of a classification model beyond what would be expected merely by chance. Although
model performance peaks using concentration data ranging from 0-100 m depth, we found that also
including data points with no depth information results in only a relatively minor decrease in Cohen’s
kappa while at the same time allowing us to use more than twice as much data (table S6) and



thereby cover much more of the world. Over 200,000 arsenic concentration measurements with a
nominal depth of up to 100 m as well as those without a specified depth (35% without depth
information) were thereby aggregated by the process described above into more than 55,000 data
points.

Selection of predictor variables.

A collection of 52 spatially continuous predictor variables with global coverage representing various
climatic, geologic, soil and other parameters known or hypothesized to be related to the dissolution
and accumulation of arsenic in groundwater was assembled (table S2). Table S3 lists the predictor
variables used in other statistical modeling studies of groundwater arsenic contamination, which
were used as an initial point of orientation in selecting variables. In order to remove poorly
performing predictors and in the interest of creating the simplest best model, subsets of the initial 52
variables were iteratively produced through recursive feature elimination (RFE), whereby 20% of the
least important predictors were removed in a series of random forest models. Importance here is
defined as the decrease in the accuracy of a random forest model when the values of a variable are
randomly reassigned over all cases. Variables were removed iteratively until only two remained.
5000 trees were grown for the first random forest iteration and 2000 trees for all subsequent
iterations. The collection of 11 variables selected for use in the final model was that from the model
with the least number of variables whose error rate was within one standard error of the random
forest with the smallest error rate.

Random forest modeling and validation.

The random forest grew 10,001 trees using the training dataset and the variables found using the
automated selection procedure described above. The binary outcomes of these trees were averaged
such that the random forest model provides the probability of encountering groundwater arsenic
greater than the 10 pg/L threshold for a given set of values of the predictor variables.

The model was then applied to the test dataset with its performance being evaluated by various
statistics, including the Area Under the ROC (receiver operating characteristic (ROC)) Curve
(AUC)(51). The AUC provides a single statistic characterizing the accuracy of predicting high values
(sensitivity) and low values (specificity) and is found by applying many different cutoffs between 0
and 1 to the modeled probabilities. The cutoff is the value used to determine whether the modeled
probabilities should be considered high or low. The AUC is the area beneath the curve drawn through
the points on the plot of specificity versus 1-specificity. The value of the AUC generally ranges from
0.5 (equivalent to an uneducated guess) to 1 (perfect predictive accuracy).

The importance of the variables was also used to help assess the relative influence of the different
predictor variables, as measured for each tree by the mean decrease in accuracy and mean decrease
in Gini node impurity, and averaged over all trees. The accuracy test was performed on out-of-bag
samples (those not randomly selected to grow a tree) by randomly resorting the values of a variable
over all cases, such that a variable’s importance is inversely proportional to its decrease in accuracy
when the incorrect values of the variable are used. Node impurity as measured by the Gini index
refers to how well the two classes (high or low arsenic) are split into two branches at a given node.



Impurity relates to the amount of mixing of the two classes within each branch, such that the lower
the impurity associated with using a certain variable, the more effective that variable is in
differentiating between the two classes.

Calculation of population affected.

The random forest model was used to estimate the number of people potentially exposed to high
levels of geogenic arsenic in drinking water. The first step was to find probability cutoffs to use in
classifying the arsenic groundwater hazard as being either high or low. For this purpose, we
considered the probability at which sensitivity and specificity are equal as well as that at which the
positive predictive value (PPV) and negative predictive value (NPV) are equal. These comparisons
were carried out using probability intervals of 0.01 with the full dataset. That is, although the training
dataset was used to generate the model and the test dataset used to verify the model, both were
combined so as to utilize all available data to determine how to interpret the model.

Sensitivity and specificity are the rates at which high and low measured arsenic concentrations,
respectively, are successfully identified by the model. On the other hand, PPV and NPV are the rates
at which the high and low model predictions, respectively, are correct. The seemingly subtle
differences between these two sets of statistics can be clarified by considering their definitions in
terms of true positives (TP), true negatives (TN), false positives (FP) and false negatives (FN):

Sensitivity = = (2)
Specificity = 2)
pecificity = ———
- - TP
Positive predictive value = (3)
TP+FP
. - TN
Negative predictive value = (4)
TN+FN

Comparisons of sensitivity-specificity and PPV-NPV generally yield different results, either of which
could provide a sensible basis for deriving risk from the arsenic hazard map. Given the similar nature
of these two sets of statistics, either considering the accuracy of the determination of high and low
values or the accuracy of the predictions themselves, both were taken together to establish a range
of reasonable probability cutoff values for deriving risk.

Once identified, the high hazard areas were then used to determine the populations at risk in these
areas. Global population was taken from a 1-km resolution model of projected population in 2020
based on a “middle-of-the-road” socio-economic scenario with respect to current trends in
environmental sustainability and distribution of wealth(52). Urban and non-urban populations in
each country were then multiplied by the urban/non-urban rates of household groundwater use, as
indicated in the most recent studies (up to past two decades) reporting groundwater-use statistics
contained within country-level reports of the UNICEF/WHO Joint Monitoring Program (JMP)(53).
These reports provide rates of consumption of unprocessed groundwater, as opposed to tap water
(that may come from groundwater and have undergone some degree of treatment), rainwater,
packaged water, surface water or other improved and non-improved sources, but they do not
account for any arsenic filtration that may occur at a community water point or in the household.
Urban areas were found by means of a global land use map(54). Where these household-level



groundwater-use statistics were not available for a country, a single groundwater utilization rate was
applied to both urban and non-urban areas that was calculated from countries’ groundwater
withdrawal rates provided in FAO’s AQUASTAT database(55), where available. Finally, the value of
each cell or pixel was reduced by multiplying the pixel’s groundwater-consuming population by its
probability of having high arsenic concentrations. The calculation of potentially affected population is
summarized in the following equations:

Popaffect = Popaffect,rural + Popaffect,urban (5)
Popryral X GWryral X Probassio, Probpg~q19 > Cut

Popaffect,rural(PrObAs>10) = { rura rura s 0, PT‘ObAz>10 < Cut (6)

_ Popurban X GWurban X PrObAs>1O: PrObAs>10 > Cut
Popaffect,urban(PT'ObAs>10) = { 0, Probagqo < Cut (7)
where:
Popafrect is the potentially affected population
Popryral(urban) is the rural (urban) population
Gw is the (rural or urban) proportion of household groundwater usage
Probpg~10 is the probability of the concentration of arsenic exceeding 10 pg/L
Cut is the probability cutoff used to distinguish between high and low risk areas
Fluvisols o} Clay fraction (0 cm) o
Priestley-Taylor alpha coef. o Soil pH (200 cm) o
Aridity o Aridity o
Potential ET o Precipitation o
Sand fraction (200 cm) o} Actual ET (o}
Clay fraction (0 cm) o Temperatures o]
Temperature o Priestley-Taylor alpha coef. o]

| N I B I B T T T T
160 220 280 0 500 1000
Mean decrease accuracy (%) Mean decrease Gini

Supplementary Figure 1 | Importance of the predictor variables in the final random forest model.
Both the (a) mean decrease in accuracy and (b) mean decrease in the Gini index are greater when the
variable in question more strongly improves the model’s accuracy or node impurity, respectively.



Supplementary Figure 2 | Arsenic in groundwater prediction map for North and Central America
and the Caribbean.



Supplementary Figure 3 | Arsenic in groundwater prediction map for Europe.



Supplementary Figure 4 | Arsenic in groundwater prediction map for central, South and East Asia.



Supplementary Figure 5 | Arsenic in groundwater prediction map for continental Southeast Asia.
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Supplementary Figure 6 | Arsenic in groundwater prediction map for South America.
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Supplementary Figure 7 | Arsenic in groundwater prediction map for Africa and the Arabian
peninsula.
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Supplementary Figure 8 | Arsenic in groundwater prediction map for Australia and southwest
Pacific islands.

13



Supplementary Figure 9 | Modeled probability of arsenic concentration in groundwater exceeding
5 ug/L. This model was created using the same training/testing data and variables as the final model
of the paper (Fig. 2).

Supplementary Figure 10 | Modeled probability of arsenic concentration in groundwater exceeding
50 pg/L. This model was created using the same training/testing data and variables as the final model
of the paper (Fig. 2).
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Supplementary Figure 11 | Prediction models using different depth ranges of data. All predictor
variables were used with different depth ranges of predictor data (see Table S6). Maps in the right-
side column show probability differences of the model in the left-side column relative to the model
using data from 0-100m plus data without depth information (same as used in the final model,

Fig. 2).
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Supplementary Figure 11 (cont.)
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Supplementary Table 1 | Groundwater arsenic measurements. Listed are all of the measurements

considered for use in the study. For modelling, data were aggregated to 1-km? pixels corresponding

to the predictor data and averaged. The proportion of aggregated measurements in the final model

coming from each country is shown in the column, “% of final data coming from country”.

Country n Avg. Conc. % >10 % with Avg. conc., % of final
(ng/L) pg/L depth aggregated | data coming

points in from

final model | country

(ne/L)
Afghanistan(56) 108 1.8+2.8 1.9 100 1.8+2.8 0.19
Algeria(57) 4 55+1.7 0.0 100 55+1.7 0.01
Argentina(14-17, 58, 59) 685 | 132.5+723.1 59.9 20 139 + 775 1.04
Australia(60-63) 215 | 30.5+268.9 2.1 29 1.4+9.2 0.25
Bangladesh(64) 4129 63 +139.7 47.3 100 | 62.2+127 6.28
Belgium(65) 315 2.1+1 0.6 0 21+1 0.56
Bosnia and Herzegovina(65) 16 0.4+0.9 0.0 0 0.4+0.9 0.03
Botswana(66) 54 56 +92.3 53.8 13| 49.9+81.1 0.07
Brazil(59, 67) 1109 5.1+3 5.0 0 57%2.9 1.23
Bulgaria(65) 32 1.3+1.5 0.0 0 1.3+1.5 0.06
Burkina Faso(34) 1486 7.6 £33.8 15.4 0 7.3+27.4 2.01
Cambodia(18, 19, 68) 42909 59.4 +131 17.6 3| 21.3%722 10.89
Canada(69, 70) 44 1.6+2.6 2.4 41 1.5+2.7 0.07
China(20-22) 3540 25+ 106.1 34.8 7| 23.7+105 5.37
Croatia(65) 7 1.3+0.4 0.0 0 1.2+0.4 0.01
Cyprus(65) 99 2.1+5.1 3.3 0 2.1%5.2 0.16
Czech Republic(65) 702 22+4.4 3.7 0 21+43 1.10
Dem. Rep. Congo(57) 1 10.0 0.0 100 10.0 0.00
Denmark(65) 1383 1.9+43 2.6 0 1.5+2.7 0.88
Estonia(65) 68 5.2+2.4 0.0 0 5.2+2.4 0.09
Ethiopia(71-73) 155 12.1+24.9 29.9 49 14.4 + 28 0.21
France(65) 29 1.8+1.5 0.0 0 1.8+1.5 0.05
Germany(65) 860 1.8+8.8 1.7 65 1.5+7.4 1.16
Ghana(74, 75) 246 6+32.7 5.0 7 5+32.7 0.39
Greece(65, 76) 90 18.1+22.9 44.3 73| 17.7+2238 0.16
Hungary(77) 16 71+69.4 40.9 25| 39.1+59.4 0.04
Iceland(65) 1 0.1 0.0 100 0.1 0.00
India(23-25, 78-100) 123436 | 55.6 +466.5 46.6 100 | 27.3+75.8 19.47
Indonesia(37, 101) 485 25+7.4 7.6 81 26+8 0.42
Ireland(65) 88 3.4+12 0.0 0 1.6+1.6 0.07
Italy(65) 1440 6.5 +30.9 7.5 0 5.9+26.9 2.50
Japan(102) 2 5.5+6.4 0.0 0 5.5+6.4 0.00
Latvia(65) 191 1.1+1 0.0 0 1+0.7 0.15
Lithuania(65, 102) 122 1.9+3.9 0.0 0 1.3+0.8 0.16
Malawi(103) 25 0+0 0.0 100 0+0 0.04
Mali(57) 1 0.0 0.0 100 1+1.4 0.00
Mexico(26, 104) 1561 25.7 +303.6 33.9 2| 18.4+65.5 2.34
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Morocco(102) 2 26+2.1 0.0 0 26+2.1 0.00
Myanmar(105) 55| 69.6+119.4 50.0 100 73.4+118 0.01
Nepal(106) 7575 15.8+61.5 26.8 91| 12.8+375 3.19
Netherlands(65) 196 5.3+13.1 8.8 0 5.3+13.2 0.35
Nicaragua(59) 388 21.9+76.3 15.7 0 7.9+153 0.37
North Macedonia(65) 35 1.4+1.3 0.0 0 1.3+1.1 0.06
Norway(107, 108) 477 0.8+2 1.2 95 0.7+1.9 0.61
Pakistan(28, 29) 1281 | 102.5+123.1 49.5 31| 64.2+96.9 1.36
Peru(109) 56 26.6 + 112 12.0 88 29 +118 0.09
Poland(65) 1130 2.8+3.9 2.0 0 28+4 1.80
Portugal(59, 65) 745 9+46.4 7.6 0 6.7 +28.1 1.06
Romania(77) 56 29.3 £55.7 36.4 66 | 16.3+40.1 0.04
Russia(108) 1 0.1 0.0 0 5.5+3.4 0.01
Serbia(65) 77 3.9+85 12.3 0 41+87 0.13
Slovakia(65) 234 9.9 +108 4.1 1 10.4 + 111 0.39
Slovenia(65) 56 0.4+0.5 0.0 98 0.3%0.5 0.10
South Africa(110) 56 6.1+24.8 5.4 0 6.1+24.8 0.10
Spain(59) 123 38.4 +50.6 49.4 0| 38.8+483 0.14
Sweden(65, 111) 595 1.6+6.2 4.3 89 1.3+6.1 0.53
Switzerland(112, 113) 1027 29+9.4 5.8 7 2.8+95 1.42
Tanzania(114) 48 2.3+5 6.7 0 24%5.2 0.08
United Kingdom(65, 115) 2804 3.1+145 4.6 8 3.1+14.9 4.64
United States (30, 69) 50625 8.8+123 6.9 88 4.9+437 24.43
Vietnam(32, 33, 116) 1140 31.5+72.3 33.3 57| 25.1+60.2 1.60
TOTAL 254436 42 + 339 39.8 72.3 16 + 102 100
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Supplementary Table 2 | Independent variables tested for modeling. The 11 variables ultimately

used in the final model are indicated in bold.

Dataset Resolution
Climate

Actual evapotranspiration (AET)(117) 30”
Aridity (PET(118)/precipitation(119)) 30”
Potential evapotranspiration (PET)(118) 30”
Precipitation(119) 30”
Priestley-Taylor alpha coefficient(117) (AET/PET) 30”
Temperature(120) 30”
Geology

Carbonate sedimentary rocks(121) polygon
Felsic igneous rocks(121) polygon
Felsic plutonic rocks(121) polygon
Felsic volcanic rocks(121) polygon
Igneous rocks(121) polygon
Intermediate igneous rocks(121) polygon
Intermediate plutonic rocks(121) polygon
Intermediate volcanic rocks(121) polygon
Mafic igneous rocks(121) polygon
Mafic plutonic rocks(121) polygon
Mafic volcanic rocks(121) polygon
Metamorphic rocks(121) polygon
Non-carbonate sedimentary rocks(121) polygon
Plutonic rocks(121) polygon
Pyroclastic rocks(121) polygon
Quaternary units(122) polygon
Sedimentary rocks, all(121) polygon
Sedimentary rocks, carbonate(121) polygon
Sedimentary rocks, other(121) polygon
Volcanic rocks(121) polygon
Soil

Andosols(123) 30”
Calcisols(123) 30”
Cation exchange capacity(123) 30”
Clay (weight percentage, 0 cm depth)(123) 30”
Clay (weight percentage, 200 cm depth)(123) 30”
Coarse fragments (volumetric percentage, 0 cm depth)(123) 30”
Coarse fragments (volumetric percentage, 200 cm depth)(123) 30”
Fluvisols(123) 30”
Gleysols(123) 30”
Hydrologic soil groups A and A/D (>90% sand and <10% clay)(124) 30”
Hydrologic soil groups B and B/D (50-90% sand and 10-20% clay)(124) 30”
Hydrologic soil groups C and C/D (<50% sand and 20-40% clay)(124) 30”
Hydrologic soil groups D and D/D (<50% sand and >40% clay)(124) 30”
Organic carbon content(123) 30”

pH (200 cm depth) (123) 30”
Sand (weight percentage, 0 cm depth)(123) 30”
Sand (weight percentage, 200 cm depth)(123) 30”
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Silt (weight percentage, 0 cm depth)(123)

30//

Silt (weight percentage, 200 cm depth)(123) 30”
Soil and sedimentary deposit thickness(125) 30”
Solonchaks(123) 30”
Water capacity until wilting point(123) 30”
Other

Surface slope(126) 30”
Topographic wetness index(126) 30”
Urbanization(54) 30”
Water table depth(127) 30”
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Supplementary Table 3 | Summary of the predictor variables used in previous statistical learning

classification models of arsenic concentrations in groundwater.

Country/region Predictor variables Geochemical setting Reported AUC
Burkina Faso(34) Metamorphic and igneous intrusive and hard rock 0.57-0.83
extrusive rocks
China(21) Distance to rivers, gravity, Holocene arid-oxidizing/reducing n/a
sediments, river density, saline soils, slope,
subsoil texture, topographic wetness index
China (Shanxi Distance to rivers, gravity, saline sails, reducing n/a
Province) topographic index, topographic wetness
index, vegetation index
Global sedimentary | Aridity, carbon to nitrogen ration of arid-oxidizing/reducing n/a
basins (40) subsoil, distance to rivers, distance to sedimentary basins
volcanoes/volcanic rocks, drainage
condition, elevation, evapotranspiration,
irrigation, precipitation, slope, soil
drainage, subsoil/topsoil texture, subsoil
organic carbon, subsoil soil pH,
temperature
India (Uttar Fluvisols, geology, groundwater level, land | reducing 0.74
Pradesh) use, slope, soil organic carbon, soil texture
Pakistan(29) Aridity, Holocene fluvial sediments, arid-oxidizing 0.80
irrigated area, slope, soil organic carbon,
Soil pH
Southeast Asia(37) Alluvial/deltaic/floodplain deposits, reducing ~0.7
subsoil/topsoil texture, organic-rich
deposits
USA(31) As C/Be C/Bi C/Mo C/Sb C-soil-horizon arid-oxidizing/reducing, 0.82
concentrations, base flow index, depth to hard rock
bedrock/groundwater, elevation
difference in watershed, geological age
(Cambrian to Quaternary), drainage
condition, intrusive/extrusive igneous
rocks, land cover (crops), saline lake
sediments, sand in soil, slope
USA (Maine) Geology, water geochemistry hard rock n/a
USA (south Distance to rivers, geology, soil texture reducing 0.76
Louisiana)
Vietnam (Red River | Alluvial/deltaic deposits, medium-textured | reducing n/a
Delta)(32) soils, organic-rich deposits

21



Supplementary Table 4 | Percentage of population potentially affected by consuming arsenic

>10 ug/L from groundwater and area with high arsenic hazard by continent as a range of values
based on the cutoffs of 0.57 and 0.72.

Continent Area (kmz) with high As hazard Population potentially affected
Asia 636,000-2,895,000 (1.41% — 6.44%) 90,800,000 — 206,800,000
Africa 15,000-591,000 (0.05% — 1.97%) 425,000 - 8,100,000

South America

345,000-849,000 (1.94% — 4.77%)

2,400,000 - 3,600,000

North America

59,000-448,000 (0.24% — 1.85%)

375,000 - 1,250,000

Europe 6,000-33,000 (0.06% — 0.34%) 102,000 - 525,000
Oceania 23,000-110,000 (0.28% — 1.35%) <1,000
TOTAL 1,084,000-4,926,000 (0.81% — 3.70%) 94,102,000 — 220,275,000

Supplementary Table 5 | Potentially arsenic-affected population by country. Range is based on
cutoffs of 0.57 and 0.72.

Country Potentially affected population (10 pg/L)
Afghanistan 2-32,651

Algeria 7-9,451

Angola 224 -16,551

Argentina 2,391,606 - 3,432,091
Australia 148 - 890

Austria 0-8

Bangladesh 51,371,880 - 69,146,550
Belgium 0-189

Belize 0-40

Benin 0-2,351

Bhutan 0-6,502

Bolivia 3,350 - 34,863
Botswana 753 -5,901

Brazil 8,172 - 120,053

Bulgaria 0-2

Burkina Faso

21,996 - 274,577

Burundi 1,147 - 203,921
Cote d'lvoire 0-1,048
Cambodia 278,774 - 524,256
Cameroon 0-139,050
Canada 0-429

Central African Rep. 0-1,787

Chad 135 - 255,304
Chile 0-48

China 4,308,100 - 12,149,940
Colombia 36-2,195

Congo 0-45

Croatia 0-4

Cuba 0-15,394

Cyprus 0-58

Czech Republic 0-24
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Dem. Rep. Congo

1,289 - 49,228

Denmark 31-453

Djibouti 8- 847
Dominican Rep. 1-840

Ecuador 0-6,050

Egypt 0-169,388

El Salvador 43 -324

Eq. Guinea 0-9

Eritrea 10-21,001
Eswatini 0-197

Ethiopia 315,840 - 3,888,376
Finland 0-2

France 0-27

Gabon 0-1

Germany 0-3

Ghana 296 - 24,935
Greece 476 - 2,004
Guatemala 259 - 16,967
Haiti 107 - 18,485
Honduras 213 - 3,459
Hungary 29,942 - 164,158
India 17,527,410 - 90,347,280
Indonesia 9,170 - 67,830
Iran 221-22,954
Iraq 18,157 - 170,171
Ireland 0-63

Israel 0-171

Italy 10,214 - 23,797
Jordan 0-26
Kazakhstan 36,219 - 295,985
Kenya 37,439 - 405,190
Kuwait 5,255 -61,458
Kyrgyzstan 378 -3,147

Laos 0-133

Lesotho 0-15

Libya 5-2,988
Madagascar 58 - 45,337
Malawi 0 - 8,005

Mali 955 - 131,336
Mauritania 11-92,956
Mexico 353,877 -977,231
Moldova 0-21

Mongolia 226,112 - 550,620
Morocco 103 - 44,357
Mozambique 280 - 73,235

Myanmar

19,659 - 1,859,850
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N. Cyprus 0-88

Namibia 130- 29,959
Nepal 315,985 - 858,837
Netherlands 64 - 3,646
Nicaragua 1,422 - 16,259
Niger 1,997 - 762,295
Nigeria 0-218,666
Norway 0-6

Oman 0-235

Pakistan 15,932,580 - 27,002,110
Palestine 0-67

Panama 0-189

Papua New Guinea 0-63

Paraguay 2,654 -4,943
Peru 28 - 2,088
Philippines 0-11,501

Poland 0-38

Portugal 81-1,293

Qatar 0-211

Romania 13,444 - 73,196

Russia (including Asian part)

29,632 - 186,941

Rwanda 0-54,052

S. Sudan 0 - 28,000
Saudi Arabia 1-1,090
Senegal 0-9,303

Serbia 705 -9,458
Slovakia 6-54

Somalia 1,266 - 330,639
Somaliland 10,746 - 49,714
South Africa 4 -5,854

Spain 176 - 927

Sri Lanka 0-66

Sudan 1,036 - 127,991
Sweden 4-202
Switzerland 123 -575

Syria 0-4,157
Taiwan 32,452 - 236,214
Tajikistan 3-133
Tanzania 24,938 - 471,639
Thailand 9-3,317
Tunisia 0-999

Turkey 0-809
Turkmenistan 46 - 63,572
Uganda 3,615-71,741
United Arab Emirates 0-84

United Kingdom

16,672 - 57,589
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United States of America 21,837 - 207,249
Uruguay 30-255

Uzbekistan 6,264 - 229,305
Venezuela 4-5,428

Vietnam 730,240 - 3,151,414
Yemen 7 -19,625

Zambia 12-25,110

Zimbabwe 57 - 44,987

TOTAL: 94,128,637 - 220,311,265

Supplementary Table 6 | Analysis of the effect on random forest model performance by the
selection of concentration data based on depth range. All predictor variables were used in each

model.

Depth range of concentration data No. data points Prevalence Cohen's kappa
0-25m 15,298 0.3804 0.5426
0-50 m 22,320 0.3423 0.5591
0-75m 25,776 0.3192 0.5618
0-100 m 28,040 0.2993 0.5678
0-125m 29,495 0.2902 0.563
0-150 m 30,649 0.2817 0.552
all data with depth info 56,801 0.2014 0.5262
all data 86,905 0.18387 0.5009
0-100 m + data without depth info 58,445 0.2217 0.5456
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